Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38728177

RESUMO

Two Gram-stain-negative, rod-shaped bacteria, designated as strains KJ10-1T and KJ40-1T, were isolated from marine brown algae. Both strains were catalase-positive, oxidase-positive, and facultative aerobic. Strain KJ10-1T exhibited optimal growth at 25 °C, pH 7.0, and 3 % NaCl, whereas strain KJ40-1T showed optimal growth at 25 °C, pH 7.0, and 2 % NaCl. The respiratory quinones of strain KJ10-1T were ubiquinone-8, ubiquinone-7, menaquinone-7, and methylated menaquinone-7, while the respiratory quinone of strain KJ40-1T was only ubiquinone-8. As major fatty acids, strain KJ10-1T contained C16 : 0, C17 : 1 ω8c, iso-C15 : 0, and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and strain KJ40-1T contained C16 : 0 and summed features 3 and 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The major polar lipids in strain KJ10-1T were phosphatidylethanolamine, phosphatidylglycerol, and an unidentified aminolipid, whereas those in strain KJ40-1T were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G+C contents of strains KJ10-1T and KJ40-1T were 42.1 and 40.8 mol%, respectively. Based on 16S rRNA gene sequences, strains KJ10-1T and KJ40-1T exhibited the closest relatedness to Shewanella saliphila MMS16-UL250T (98.6 %) and Vibrio rumoiensis S-1T (95.4 %), respectively. Phylogenetic analyses, based on both 16S rRNA and 92 housekeeping genes, showed that the strains formed distinct phylogenic lineages within the genera Shewanella and Vibrio. Digital DNA-DNA hybridization and orthologous average nucleotide identity values between strain KJ10-1T and other Shewanella species, as well as between strain KJ40-1T and other Vibrio species, were below the thresholds commonly accepted for prokaryotic species delineation. Based on the phenotypic, chemotaxonomic, and phylogenetic data, strains KJ10-1T and KJ40-1T represent novel species of the genera Shewanella and Vibrio, respectively, for which the names Shewanella phaeophyticola sp. nov. and Vibrio algarum sp. nov. are proposed, respectively. The type strains of S. phaeophyticola and V. algarum are KJ10-1T (=KACC 22589T=JCM 35409T) and KJ40-1T (=KACC 22588T=JCM 35410T), respectively.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Phaeophyceae , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Shewanella , Ubiquinona , Vibrio , Vitamina K 2 , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Vibrio/genética , Vibrio/classificação , Vibrio/isolamento & purificação , Ubiquinona/análogos & derivados , Shewanella/genética , Shewanella/isolamento & purificação , Shewanella/classificação , Phaeophyceae/microbiologia , Vitamina K 2/análogos & derivados , Fosfolipídeos , Hibridização de Ácido Nucleico , Água do Mar/microbiologia
2.
J Microbiol Biotechnol ; 34(3): 654-662, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38213301

RESUMO

To investigate the effect of the predominant fungal species from Korean traditional meju and doenjang on soybean fermentation, the enzymatic activity and amino acid production of twenty-two fungal strains were assessed through solid- and liquid-state soybean fermentation. Enzymatic activity analyses of solid-state fermented soybeans revealed different enzyme activities involving protease, leucine aminopeptidase (LAP), carboxypeptidase (CaP), glutaminase, γ-glutamyl transferase (GGT), and amylase, depending on the fungal species. These enzymatic activities significantly affected the amino acid profile throughout liquid-state fermentation. Strains belonging to Mucoromycota, including Lichtheimia, Mucor, Rhizomucor, and Rhizopus, produced smaller amounts of total amino acids and umami-producing amino acids, such as glutamic acid and aspartic acid, than strains belonging to Aspergillus subgenus circumdati. The genera Penicillium and Scopulariopsis produced large amounts of total amino acids and glutamic acid, suggesting that these genera play an essential role in producing umami and kokumi tastes in fermented soybean products. Strains belonging to Aspergillus subgenus circumdati, including A. oryzae, showed the highest amino acid content, including glutamic acid, suggesting the potential benefits of A. oryzae as a starter for soybean fermentation. This study showed the potential of traditional meju strains as starters for soybean fermentation. However, further analysis of processes such as the production of G-peptide for kokumi taste and volatile compounds for flavor and safety is needed.


Assuntos
Aminoácidos , Alimentos de Soja , Aminoácidos/metabolismo , Alimentos de Soja/microbiologia , Glycine max , Fermentação , Fungos , Aspergillus/metabolismo , Ácido Glutâmico/metabolismo , Peptídeo Hidrolases/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38189362

RESUMO

Two Gram-stain-negative, obligately aerobic, motile rod bacteria, designated as G2-5T and G20-9T, exhibiting catalase- and oxidase-positive activities, were isolated from the phycosphere of a Chondrus species, a marine red alga. Strain G2-5T exhibited optimal growth at 30 °C and pH 5.0-6.0 and in the presence of 0.5-1.0% NaCl. In contrast, strain G20-9T demonstrated optimal growth at 25 °C and pH 6.0 and in the presence of 0.5-1.5% NaCl. Both strains contained ubiquinone-10, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C18 : 0 and 11-methyl-C18 : 1 ω7c, and diphosphatidylglycerol and phosphatidylglycerol as the major respiratory isoprenoid quinone, cellular fatty acids and polar lipids, respectively. The genomic DNA G+C contents were 57.2 mol% for strain G2-5T and 57.5 mol% for strain G20-9T. Strains G2-5T and G20-9T exhibited 98.2 % 16S rRNA gene sequence similarity, along with 82.3 % average nucleotide identity (ANI) and 25.0 % digital DNA-DNA hybridization (dDDH) values, indicating that they represent different species. Phylogenetic analyses based on both 16S rRNA gene and genome sequences revealed that strains G2-5T and G20-9T formed distinct phylogenic lineages within the genus Devosia. Strains G2-5T and G20-9T were most closely related to Devosia limi DSM 17137T and Devosia beringensis S02T with 97.7 and 96.9 % 16S rRNA gene sequence similarities, respectively. The ANI and dDDH values between strains G2-5T and G20-9T and other Devosia species were lower than 73.9 and 19.2 %, respectively, suggesting that they constitute novel species within the genus Devosia. Based on their distinct phenotypic, chemotaxonomic, and molecular characteristics, strains G2-5T and G20-9T represent two novel species of the genus Devosia, for which the names Devosia rhodophyticola sp. nov. (G2-5T=KACC 22601T=JCM 35404T) and Devosia algicola sp. nov. (G20-9T=KACC 22650T=JCM 35405T) are proposed, respectively.


Assuntos
Gammaproteobacteria , Rodófitas , Composição de Bases , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Nucleotídeos
4.
BMC Genomics ; 25(1): 28, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172677

RESUMO

BACKGROUND: Enterococcus faecium and E. lactis are phylogenetically closely related lactic acid bacteria that are ubiquitous in nature and are known to be beneficial or pathogenic. Despite their considerable industrial and clinical importance, comprehensive studies on their evolutionary relationships and genomic, metabolic, and pathogenic traits are still lacking. Therefore, we conducted comparative pangenome analyses using all available dereplicated genomes of these species. RESULTS: E. faecium was divided into two subclades: subclade I, comprising strains derived from humans, animals, and food, and the more recent phylogenetic subclade II, consisting exclusively of human-derived strains. In contrast, E. lactis strains, isolated from diverse sources including foods, humans, animals, and the environment, did not display distinct clustering based on their isolation sources. Despite having similar metabolic features, noticeable genomic differences were observed between E. faecium subclades I and II, as well as E. lactis. Notably, E. faecium subclade II strains exhibited significantly larger genome sizes and higher gene counts compared to both E. faecium subclade I and E. lactis strains. Furthermore, they carried a higher abundance of antibiotic resistance, virulence, bacteriocin, and mobile element genes. Phylogenetic analysis of antibiotic resistance and virulence genes suggests that E. faecium subclade II strains likely acquired these genes through horizontal gene transfer, facilitating their effective adaptation in response to antibiotic use in humans. CONCLUSIONS: Our study offers valuable insights into the adaptive evolution of E. faecium strains, enabling their survival as pathogens in the human environment through horizontal gene acquisitions.


Assuntos
Enterococcus faecium , Animais , Humanos , Filogenia , Enterococcus , Genômica , Antibacterianos
5.
Food Microbiol ; 119: 104435, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225047

RESUMO

Aspergillus flavus and Aspergillus oryzae are closely related fungal species with contrasting roles in food safety and fermentation. To comprehensively investigate their phylogenetic, genomic, and metabolic characteristics, we conducted an extensive comparative pangenome analysis using complete, dereplicated genome sets for both species. Phylogenetic analyses, employing both the entirety of the identified single-copy orthologous genes and six housekeeping genes commonly used for fungal classification, did not reveal clear differentiation between A. flavus and A. oryzae genomes. Upon analyzing the aflatoxin biosynthesis gene clusters within the genomes, we observed that non-aflatoxin-producing strains were dispersed throughout the phylogenetic tree, encompassing both A. flavus and A. oryzae strains. This suggests that aflatoxin production is not a distinguishing trait between the two species. Furthermore, A. oryzae and A. flavus strains displayed remarkably similar genomic attributes, including genome sizes, gene contents, and G + C contents, as well as metabolic features and pathways. The profiles of CAZyme genes and secondary metabolite biosynthesis gene clusters within the genomes of both species further highlight their similarity. Collectively, these findings challenge the conventional differentiation of A. flavus and A. oryzae as distinct species and highlight their phylogenetic, genomic, and metabolic homogeneity, potentially indicating that they may indeed belong to the same species.


Assuntos
Aflatoxinas , Aspergillus oryzae , Aspergillus flavus/metabolismo , Filogenia , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Aflatoxinas/genética , Genômica
6.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37830909

RESUMO

Two Gram-stain-negative, catalase- and oxidase-positive, aerobic non-motile and motile rod bacteria, strains MSW6T and RSW2T, were isolated from surface seawater. Strain MSW6T optimally grew at 20 °C, pH 7.0 and 3 % NaCl, while strain RSW2T optimally grew at 25 °C, pH 7.0-8.0 and 2 % NaCl. Strain MSW6T possessed menaquinone-6 as the major respiratory quinone, and its major fatty acids were iso-C15 : 1 G, iso-C15 : 0 and iso-C15 : 0 3-OH. The major polar lipid identified in strain MSW6T was phosphatidylethanolamine (PE). On the other hand, strain RSW2T had ubiquinone-8 as the predominant respiratory quinone, and its major fatty acids consisted of summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0. The major polar lipids identified in strain RSW2T were PE and phosphatidylglycerol. As the sole respiratory quinone, strain MSW6T possessed menaquinone-6, while strain RSW2T had ubiquinone-8. The DNA G+C contents of strains MSW6T and RSW2T were 31.9 and 43.4 mol%, respectively. Phylogenetic analyses based on 16S rRNA and core gene sequences showed that strain MSW6T formed a phylogenic lineage with Psychroserpens mesophilus KOPRI 13649T, while strain RSW2T formed a phylogenic lineage with Marinomonas primoryensis KMM 3633T. Strain MSW6T shared 97.9 % 16S rRNA gene sequence similarity and 80.7 % average nucleotide identity (ANI) ith P. mesophilus KOPRI 13649T, and strain RSW2T shared 99.1 % 16S rRNA gene sequence similarity and 93.1 % ANI with M. primoryensis KMM 3633T. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strains MSW6T and RSW2T represent novel species of the genera Psychroserpens and Marinomonas, respectively, for which the names Psychroserpens ponticola sp. nov. and Marinomonas maritima sp. nov. are proposed, respectively. The type strain of P. ponticola is MSW6T (=KACC 22338T=JCM 35022T) and the type strain of M. maritima is RSW2T (=KACC 22716T=JCM 35550T).


Assuntos
Ácidos Graxos , Marinomonas , Ácidos Graxos/química , Ubiquinona/química , Filogenia , RNA Ribossômico 16S/genética , Vitamina K 2/química , Cloreto de Sódio , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Água do Mar/microbiologia , Fosfolipídeos/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-37755148

RESUMO

Two Gram-negative, moderately halophilic, and motile rod bacteria, strains G2-23T and J2-29T, showing catalase- and oxidase-positive activities were isolated from species of the marine algae Chondrus and Ulva, respectively. Both strains optimally grew at 30 °C, pH 7.0 and 2% (w/v) NaCl. Both strains contained ubiquinone-10 as the sole isoprenoid quinone. Strain G2-23T contained summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0 and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c/ω6c) as major cellular fatty acids, and phosphatidylethanolamine (PE), phosphatidyl-N-monomethylethanolamine (PME), phosphatidylglycerol (PG), diphosphatidylglycerol and an unidentified phospholipid (PL) as major polar lipids. Strain J2-29T contained summed feature 8, C18 : 1 ω7c 11-methyl and C16 : 0 as major cellular fatty acids and PE, PME, PG and PL as major polar lipids. The genomic DNA G+C contents of strains G2-23T and J2-29T were 59.5 and 62.2 mol%, respectively. Both strains shared 97.9 % 16S rRNA gene sequence similarity, 79.8 % average nucleotide identity (ANI) and 22.8 % digital DNA-DNA hybridization (dDDH) values, indicating that they represent different species. Phylogenetic and phylogenomic analyses by 16S rRNA gene and genome sequences, respectively, revealed that strains G2-23T and J2-29T formed different phylogenic lineages within the genus Hoeflea. ANI and dDDH values between strains G2-23T and J2-29T and other Hoeflea type strains were less than 79.0 and 22.1% and 80.5 and 23.3 %, respectively, suggesting that they represent novel species of the genus Hoeflea. In summary, based on their phenotypic, chemotaxonomic and molecular properties, strains G2-23T and J2-29T represent two different novel species of the genus Hoeflea, for which the names Hoeflea algicola sp. nov. (G2-23T=KACC 22714T=JCM 35548T) and Hoeflea ulvae sp. nov. (J2-29T=KACC 22715T=JCM 35549T), respectively, are proposed.


Assuntos
Gammaproteobacteria , Phyllobacteriaceae , Composição de Bases , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Fosfolipídeos , Nucleotídeos
8.
Artigo em Inglês | MEDLINE | ID: mdl-37610811

RESUMO

A Gram-stain-positive alkali-tolerant and strictly aerobic bacterium, designated strain P16T, was isolated from a marine red alga, Porphyridium cruentum, in the Yellow Sea, Republic of Korea. Cells were motile rods with peritrichous flagella and exhibited catalase and oxidase activities. The optimal growth of strain P16T was observed to occur at 30 °C and pH 8.0 and in the presence of 2.0 % (w/v) NaCl. Menaquinone-7 was identified as the sole respiratory quinone. Strain P16T contained anteiso-C15 : 0, iso-C15 : 0, iso-C14 : 0 and iso-C16 : 0, and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as major cellular fatty acids and polar lipids, respectively. The G+C content of strain P16T was 40.8 mol%. Strain P16T was most closely related to Shouchella plakortidis P203T, Shouchella gibsonii DSM 8722T and Alkalicoccobacillus murimartini LMG 21005T with 98.1, 98.1 and 98.0 % 16S rRNA gene sequence similarities, respectively. Phylogenetic analyses based on 16S rRNA gene and genome sequences revealed that strain P16T, S, plakortidis, S. gibsonii and A. murimartini formed a single phylogenetic lineage cluster, and genomic relatedness analyses showed that they are different species. Based on phylogenetic, phenotypic, chemotaxonomic and molecular features, strain P16T represents a novel species of the genus Alkalicoccobacillus, for which the name Alkalicoccobacillus porphyridii sp. nov. is proposed. The type strain is P16T (=KACC 19520T=JCM 32931T). In addition, S. plakortidis and S. gibsonii are reclassified as Alkalicoccobacillus plakortidis comb. nov. (type strain P203T=DSM 19153T=NCIMB 14288T) and Alkalicoccobacillus gibsonii comb. nov. (type strain PN-109T=ATCC 700164T=DSM 8722T=KCCM 41407T), respectively.


Assuntos
Ácidos Graxos , Rodófitas , Composição de Bases , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
9.
J Microbiol Biotechnol ; 33(11): 1448-1456, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37482799

RESUMO

A Gram-positive, non-motile, and non-spore-forming lactic acid bacterium, designated as BK2T, was isolated from kimchi, a Korean traditional fermented vegetable food, and the taxonomic characteristics of strain BK2T, along with strain LMG 11983, were analyzed. Both strains optimally grew at 30°C, pH 7.0, and 1.0% NaCl. Cells of both strains were heterofermentative and facultatively anaerobic rods, demonstrating negative reactions for catalase and oxidase. Major fatty acids (>10%) identified in both strains were C18:1 ω9c, C16:0, and summed feature 7 (comprising C19:1 ω6c and/or C19:1 ω7c). The genomic DNA G+C contents of both strains were 44.7 mol%. The 16S rRNA gene sequence similarity (99.9%), average nucleotide identity (ANI; 99.9%), and digital DNA-DNA hybridization (dDDH; 99.7%) value between strains BK2T and LMG 11983 indicated that they are different strains of the same species. Strain BK2T was most closely related to Weissella confusa JCM 1093T and Weissella cibaria LMG 17699T, with 100% and 99.4% 16S rRNA gene sequence similarities, respectively. However, based on the ANI and dDDH values (92.3% and 48.1% with W. confusa, and 78.4% and 23.5% with W. cibaria), it was evident that strain BK2T represents a distinct species separate from W. confusa and W. cibaria. Based on phylogenetic, phenotypic, and chemotaxonomic features, strains BK2T and LMG 11983 represent a novel species of the genus Weissella, for which the name Weissella fermenti sp. nov. is proposed. The type of strain is BK2T (=KACC 22833T=JCM 35750T).


Assuntos
Weissella , Weissella/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Ácidos Graxos/análise , Genômica , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-37078692

RESUMO

A Gram-stain-negative, yellow-pigmented and facultatively aerobic bacterium, designated strain U1T, was isolated from plastic dumped soil sampled in the Republic of Korea. Cell of strain U1T were non-motile rods showing catalase-negative and oxidase-positive activities. Strain U1T was shown to grow at 10-37 °C (optimum, 25-30 °C) and pH 6.0-9.0 (optimum, pH 8.0), and in the presence of 0-0.5 % (w/v) NaCl (optimum, 0 %). Strain U1T contained iso-C15 : 0, C16 : 0, C16 : 1 ω5c and summed feature 3 (comprising C16 : 1 ω6c and/or C16 : 1 ω7c) as the major cellular fatty acids (>5 %) and menaquinone-7 as the sole respiratory quinone. Phosphatidylethanolamine, two unidentified aminolipids and three unidentified lipids were identified as the major polar lipids. The DNA G+C content of strain U1T calculated from the whole-genome sequence was 45.5 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain U1T formed a distinct phylogenetic lineage within the genus Dyadobacter. Strain U1T has the highest 16S rRNA sequence similarity to Dyadobacter bucti QTA69T (97.9 %). Average nucleotide identity and digital DNA-DNA hybridization values between strain U1T and D. bucti QTA69T were 74.6 % and 18.9 %, respectively. Based on phenotypic, chemotaxonomic and molecular features, strain U1T represents a novel species of the genus Dyadobacter, for which the name Dyadobacter pollutisoli sp. nov. is proposed. The type strain is U1T (= KACC 22210T=JCM 34491T).


Assuntos
Cytophagaceae , Ácidos Graxos , Ácidos Graxos/química , Solo , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA
11.
Artigo em Inglês | MEDLINE | ID: mdl-37093737

RESUMO

Two Gram-stain-negative, facultative aerobic, catalase- and oxidase-positive, and non-motile rod bacteria, strains BLT and W38T, that were isolated from soil and freshwater, respectively, were taxonomically characterized. Both strains optimally grew at 30 °C and pH 7.0 in Reasoner's 2A medium and contained ubiquinone-8 as the sole respiratory quinone. As major fatty acids (>10 %), strain BLT contained iso-C15 : 0 and summed features 3 and 9 (comprising iso-C15 : 0 2-OH and/or C16 : 1 ω7c/ω6c and iso-C17 : 1 ω9c and/or C16 : 0 10-methyl, respectively), whereas strain W38T contained iso-C15 : 0, iso-C16 : 0 and summed feature 9. Diphosphatidylglycerol and phosphatidylmonomethylethanolamine as major polar lipids and phosphatidylethanolamine and phosphatidylglycerol as minor polar lipids were detected in both strains. The DNA G+C contents of strains BLT and W38T were 68.3 and 65.3 %, respectively. Phylogenetic analyses based on 16S rRNA gene and genome sequences revealed that strains BLT and W38T formed a tight phylogenetic lineage with Tahibacter species, and they shared 98.8 % 16S rRNA gene sequence similarity and 75.5 % average nucleotide identity (ANI) and 16.6 % digital DNA-DNA hybridization (dDDH) values, indicating that they are different species. Strains BLT and W38T were most closely related to Tahibacter caeni BUT-6T and Tahibacter aquaticus PYM5-11T with 97.7 and 98.0 % 16S rRNA gene sequence similarities, respectively. ANI and dDDH values between strain BLT and T. caeni BUT-6T and between strain W38T and T. aquaticus DSM 21667T were 78.5 and 21.6% and 75.3 and 21.0 %, respectively. Based on their phenotypic, chemotaxonomic and genomic properties, strains BLT and W38T represent two different novel species of the genus Tahibacter, for which the names Tahibacter soli sp. nov. and Tahibacter amnicola sp. nov. are proposed. The type strains of T. soli and T. amnicola are BLT (=KACC 22831T=JCM 35402T) and W38T (=KACC 22832T=JCM 35749T), respectively.


Assuntos
Ácidos Graxos , Fosfolipídeos , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Solo , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Técnicas de Tipagem Bacteriana , Água Doce
12.
Artigo em Inglês | MEDLINE | ID: mdl-36884367

RESUMO

A Gram-stain-positive, spore-forming and facultative aerobic bacterium, designated C11T, was isolated from mountain soil collected in the Republic of Korea. The cells were motile rods with peritrichous flagella, and positive for catalase and oxidase activities. Strain C11T grew at 15-45 °C (optimum, 30-37 °C) and pH 6.0-8.0 (optimum, pH 6.0) and in the presence of 0-1 % (w/v) NaCl (optimum, 0.5 %). Strain C11T contained menaquinone-7 as the sole isoprenoid quinone and iso-C15 : 0, iso-C16 : 0 and anteiso-C15 : 0 as the major fatty acids. Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine were the major polar lipids. The G+C content of the genomic DNA was 38.8 mol%. Strain C11T was most closely related to Neobacillus drentensis IDA1967T and Mesobacillus foraminis CV53T, with 98.0 and 97.7 %, 71.7 and 69.9 %, and 20.1 and 20.3 % 16S rRNA gene sequence similarity, average nucleotide identity, and digital DNA-DNA hybridization values, respectively. Phylogenetic analyses based on 16S rRNA gene and genome sequences showed that strain C11T was included in a phyletic lineage with members of the genus Neobacillus but was distinct from members of the genus Mesobacillus. Phenotypic, chemotaxonomic and molecular properties suggested that strain C11T represents a novel species of the genus Neobacillus, for which the name Neobacillus terrae sp. nov. is proposed. The type strain is C11T (=KACC 21661T=JCM 33943T).


Assuntos
Bacillaceae , Ácidos Graxos , Ácidos Graxos/química , Fosfolipídeos/química , Solo , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Bacillaceae/genética
13.
Curr Microbiol ; 80(4): 116, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841905

RESUMO

A strictly aerobic Gram-negative bacterium, designated R8T, isolated from garden soil in South Korea was subjected to a taxonomic study. The cells were non-spore-forming, oxidase-positive and catalase-negative, and non-motile rods (without flagella). Growth was observed between 10 °C and 40 °C (optimum, 30 °C) and between pH 6.0 and 9.0 (optimum, pH 7.0) and in the presence of 0%-1.5% (w/v) NaCl (optimum, 0%). The G + C content of the genomic DNA was 49.9% and the major isoprenoid quinone was found to be menaquinone-7. The major fatty acids of strain R8T were iso-C15:0, C16:1 ω5c, and summed feature 3 (comprising iso-C15:0 2-OH and/or C16:1 ω7c/ω6c). Phosphatidylethanolamine was identified as a major polar lipid. Comparative 16S rRNA gene sequence analysis showed that strain R8T had the highest 16S rRNA gene sequence similarity of 98.3% with Chitinophaga sedimenti TFL-3 T. Phylogenetic analyses using 16S rRNA gene sequences and concatenated 92 marker protein sequences revealed that strain R8T formed a robust phylogenetic lineage with C. sedimenti within the genus Chitinophaga. Average nucleotide identity and digital DNA-DNA hybridization values of strain R8T to Chitinophaga species were less than 77.9% and 21.1%, respectively. The phenotypic, phylogenetic, and chemotaxonomic properties support that strain R8T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga horti sp. nov. is proposed. The type strain is R8T (= KACC 19895 T = JCM 33215 T).


Assuntos
Gammaproteobacteria , Jardins , Filogenia , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , DNA Bacteriano/química , Ácidos Graxos/química , Gammaproteobacteria/genética , Análise de Sequência de DNA
14.
Food Microbiol ; 110: 104186, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36462832

RESUMO

To investigate the fermentative characteristics of Bacillus and lactic acid bacteria, the key microbes known to be involved in doenjang-meju (a Korean traditional fermented soybean brick) fermentation, we prepared and analyzed two sets of doenjang-meju inoculated with either Aspergillus oryzae and Bacillus velezensis (BDM) or A. oryzae and Leuconostoc mesenteroides (LDM). A large decrease in pH was observed during the early fermentation period in LDM, whereas the pH remained relatively constant in BDM. Although observed in higher levels in BDM during the early fermentation period, free sugar and amino acid contents and Aspergillus abundance were higher in LDM thereafter, which aligned with α-amylase and protease activity profiles in LDM and BDM, suggesting their association with Aspergillus. Higher levels of isoflavone aglycones and glycerol along with greater ß-glucosidase and lipase activities in LDM and BDM, respectively, were suggestive of the characteristics of Leuconostoc and Bacillus, respectively. More diverse and higher amounts of volatile compounds were observed in BDM than in LDM. The α-amylase, lipase, protease, ß-glucosidase, and antimicrobial activities of A. oryzae, B. velezensis, and L. mesenteroides were examined through genomic analyses and in vitro assays, which well supported the results of their fermentative characteristics in LDM and BDM.


Assuntos
Bacillus , Fabaceae , Alimentos Fermentados , Leuconostoc mesenteroides , Glycine max , Fermentação , Bacillus/genética , Amilases , alfa-Amilases , beta-Glucosidase , Peptídeo Hidrolases , Lipase , República da Coreia
15.
Food Res Int ; 155: 111085, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400461

RESUMO

To investigate the general fermentation characteristics of doenjang-meju (a Korean traditional soybean brick), they were periodically collected from eight different manufacturers during all fermentation stages, and their microbial communities and metabolic compounds (metabolites and volatile compounds) were analyzed. Bacillus and/or lactic acid bacteria (LAB, mainly Enterococcus) and Aspergillus were abundant during fermentation. Fructose and glucose; glycerol; acetate and lactate; and cadaverine, putrescine, tyramine, and histamine were identified as the major sugars, carbon compound, organic acids, and biogenic amines, respectively. Tetramethylpyrazine, butyric acid, butyl butyrate, butanol, acetic acid, 2-methylbutyrate, acetoin, 2,3-butandiol, and nonadecane were the major volatile compounds. However, the profiles of microbial communities, metabolites, and volatile compounds during fermentation varied significanlty among samples. Principal component analysis revealed that doenjang-meju had two differentiated fermentation features, Bacillus-dominated fermentation and LAB (mainly Enterococcus)-dominated fermentation, each having different metabolite and volatile compound profiles. Particularly, fewer volatile compounds were detected in LAB-dominated doenjang-meju samples. Correlation analysis showed a strong negative correlation between Bacillus and LAB, and bacteria and fungi were less correlated with each other. Enterococcus, LAB, and Bacillus were positively correlated with lactate, flavonoid aglycones, and putrescine, respectively, suggesting that they might be mainly responsible for producing the compounds during fermentation. This study provides insights into the general fermentation characteristics of doenjang-meju.


Assuntos
Bacillus , Microbiota , Alimentos de Soja , Ácido Láctico , Putrescina , República da Coreia , Alimentos de Soja/análise , Glycine max/microbiologia
16.
Food Microbiol ; 105: 104011, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35473972

RESUMO

Fermented soybean products are gaining attention in the food industry owing to their nutritive value and health benefits. In this study, we performed genomic analysis and physiological characterization of two Debaryomyces spp. yeast isolates obtained from a Korean traditional fermented soy sauce "ganjang". Both Debaryomyces hansenii ganjang isolates KD2 and C11 showed halotolerance to concentrations of up to 15% NaCl and improved growth in the presence of salt. Ploidy and whole-genome sequencing analyses indicated that the KD2 genome is haploid, whereas the C11 genome is heterozygous diploid with two distinctive subgenomes. Interestingly, phylogenetic analysis using intron sequences indicated that the C11 strain was generated via hybridization between D. hansenii and D. tyrocola ancestor strains. The D. hansenii KD2 and D. hansenii-hybrid C11 produced various volatile flavor compounds associated with butter, caramel, cheese, and fruits, and showed high bioconversion activity from ferulic acid to 4-vinylguaiacol, a characteristic flavor compound of soybean products. Both KD2 and C11 exhibited viability in the presence of bile salts and at low pH and showed immunomodulatory activity to induce high levels of the anti-inflammatory cytokine IL-10. The safety of the yeast isolates was confirmed by analyzing virulence and acute oral toxicity. Together, the D. hansenii ganjang isolates possess physiological properties beneficial for improving the flavor and nutritional value of fermented products.


Assuntos
Queijo , Debaryomyces , Fabaceae , Probióticos , Saccharomycetales , Debaryomyces/genética , Genômica , Odorantes , Filogenia , República da Coreia , Saccharomyces cerevisiae , Saccharomycetales/genética , Glycine max
17.
Artigo em Inglês | MEDLINE | ID: mdl-34550063

RESUMO

A Gram-stain-negative, strictly aerobic, catalase-negative, oxidase-positive and non-motile rod-shaped bacterium, designated strain CrO1T, was isolated from a freshwater alga Cryptomonas obovoidea in the Nakdong river of South Korea. Colonies of CrO1T were white, convex and circular and growth was observed at 25-40 °C (optimum, 37 °C) and pH 6.0-9.0 (optimum, pH 7) and in the presence of 0-0.5 % (w/v) NaCl (optimum, 0 %). CrO1T contained C16 : 0, summed feature 5 (comprising C18 : 0ante and/or C18 : 2ω6,9c), C18 : 0, summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c) and summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c) as the major cellular fatty acids (>5 %) and ubiquinone-8 as the sole respiratory quinone. Phosphatidylethanolamine was detected as the major polar lipid. The DNA G+C content of CrO1T, calculated from the whole genome sequence was 69.6 mol%. CrO1T was most closely related to Ramlibacter humi 18x22-1T with a 97.6 % 16S rRNA sequence similarity and shared less than 97.4 % 16S rRNA sequence similarities with other type strains. Phylogenetic analyses based on the 16S rRNA gene and whole genome sequences revealed that CrO1T formed a distinct phyletic lineage within the genus Ramlibacter. On the basis of the results of phenotypic, chemotaxonomic and molecular analysis, CrO1T clearly represents a novel species of the genus Ramlibacter, for which the name Ramlibacter algicola sp. nov. is proposed. The type strain is CrO1T (=KACC 19926T=JCM 33302T).


Assuntos
Criptófitas , Ácidos Graxos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Água Doce , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona
18.
Food Res Int ; 148: 110645, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507720

RESUMO

To investigate the general fermentation features of doenjang, a traditional Korean fermented soybean paste, eleven batches of doenjang were prepared. The bacterial and fungal communities and the metabolites such as free sugars, organic acids, amino acids, and volatile compounds were analyzed during fermentation. Tetragenococcus, Aspergillus, and Debaryomyces were the most common microbes; galactose, fructose, and glucose were the major sugars; and lactate and acetate were the major organic acids. Spearman correlation analyses showed that the quantity of meju was correlated with only Pediococcus and Halomonas abundance, while solar salt concentration was correlated with the relative abundance of many microbial taxa and the amount of glycerol and total volatile compounds. The abundance of heterolactic acid bacteria, such as Tetragenococcus, Pediococcus, Weissella, and Enterococcus, was positively correlated with the levels of lactate, acetate, and ethanol, suggesting that heterolactic acid fermentation may be a major metabolism pathway during the fermentation of doenjang. The abundance of Weissella, Hyphopichia, and Wickerhamomyces was positively correlated with ethyl acetate levels, whereas the abundance of Staphylococcus and Bacillus was positively correlated with the concentration of major volatile compounds, 3-methylbutanoic acid and tetramethylpyrazine, respectively, suggesting that they may play important roles in the production of flavor compounds during fermentation.


Assuntos
Microbiota , Alimentos de Soja , Bactérias , Fermentação , Alimentos de Soja/análise , Glycine max
19.
mSystems ; 6(4): e0044121, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34342543

RESUMO

The taste and quality of soy sauce, a fermented liquid condiment popular worldwide, is greatly influenced by microbial metabolism during fermentation. To investigate the fermentative features of ganjang (a Korean traditional soy sauce), ganjang batches using meju (fermented soybean) bricks and solar salts were prepared, and organic compounds, microbial communities, metagenomes, and metatranscriptomes of ganjang were quantitively analyzed during fermentation. Polymeric compound analysis in the ganjang treated with/without microbial inhibitors revealed that indigenous enzymes of meju bricks might be primarily responsible for degrading polymeric compounds. Through metagenome binning and microbe sequencing, 17 high-quality genome sequences representing all major ganjang microbiota were obtained, and their transcriptional expressions were quantitatively analyzed by mapping metatranscriptome reads normalized by spike-in RNA sequencing to the 17 genomes, which revealed that microbial metabolism might primarily occur while meju bricks are in the ganjang solution and decrease significantly after the removal of meju bricks. Metabolic pathways for carbohydrates, proteins, and lipids of the major ganjang microbiota were reconstructed, and their metabolic genes were transcriptionally analyzed, revealing that facultative lactic acid fermentation by Tetragenococcus was the major fermentation process active in the ganjang fermentation and that aerobic respiration by facultatively aerobic bacteria such as Chromohalobacter, Halomonas, and Marinobacter was also an important metabolic process during fermentation. Although the abundances of Fungi and the corresponding transcriptional expression levels were generally much lower than those of Bacteria, our analysis suggests that yeasts such as Debaryomyces and Wickerhamomyces might be in large part responsible for producing biogenic amines and flavors. IMPORTANCE The taste and quality of soy sauce, a popular fermented liquid condiment worldwide, is greatly influenced by microbial metabolism during fermentation. Spontaneous fermentation of ganjang (a Korean traditional soy sauce) in a nonsterile environment leads to the growth of diverse bacteria and fungi during fermentation, making it difficult to understand the mechanism of ganjang fermentation. Genome-centered metatranscriptomic analysis, combined with organic compound analysis, quantitative metagenome and metatranscriptome analyses, and metabolic pathway reconstruction and expressional analysis of the major ganjang microbiota during fermentation, would provide comprehensive insights into the metabolic features of ganjang fermentation.

20.
J Microbiol ; 59(8): 709-717, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34061342

RESUMO

Two Gram-stain negative, yellow-pigmented, and mesophilic bacteria, designated strains R7T and R19T, were isolated from sandy and forest soil, South Korea, respectively. Both strains were non-motile rods showing catalase- and oxidase-positive activities. Both strains were shown to grow at 10-37°C and pH 6.0-9.0, and in the presence of 0-1.5% (w/v) NaCl. Strain R7T contained iso-C14:0, iso-C15:0, iso-C16:0, and summed feature 9 (comprising C16:0 10-methyl and/or iso-C17:1ω9c), whereas strain R19T contained iso-C11:0 3-OH, C16:1ω7c alcohol, iso-C11:0, iso-C15:0, iso-C16:0, and summed feature 9 (comprising C16:0 10-methyl and/or iso-C17:1ω9c) as major cellular fatty acids (> 5%). Both strains contained ubiquin-one-8 as the sole isoprenoid quinone and phosphatidylglycerol, phosphatidylethanolamine, and an unidentified phospholipid as the major polar lipids. The DNA G + C contents of strains R7T and R19T calculated from their genomes were 66.9 mol% and 68.9 mol%, respectively. Strains R7T and R19T were most closely related to Lysobacter panacisoli C8-1T and Lysobacter niabensis GH34-4T with 98.7% and 97.8% 16S rRNA sequence similarities, respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains R7T and R19T formed distinct phylogenetic lineages within the genus Lysobacter. Based on phenotypic, chemotaxonomic, and molecular features, strains R7T and R19T represent novel species of the genus Lysobacter, for which the names Lysobacter arenosi sp. nov. and Lysobacter solisilvae sp. nov. are proposed. The type strains of L. arenosi and L. solisilvae are R7T (= KACC 21663T = JCM 34257T) and R19T (= KACC 21767T = JCM 34258T), respectively.


Assuntos
Lysobacter/isolamento & purificação , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Lysobacter/classificação , Lysobacter/genética , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...